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Introduction
PrecisionLife is a computational biology company
focusing on precision medicine analytics in
complex chronic diseases. Our mechanistic patient
stratification identifies subgroups of patients who
share causal drivers of disease and treatment
response, generating biomarkers that inform and
de-risk drug discovery and development.

Central Nervous System (CNS) diseases are often
characterized by a high degree of heterogeneity
across the patient populations, reflected in a wide
range of disease presentations and therapy
responses. In many of these indications Genome
Wide Association Studies (GWAS) have identified a
number of disease-associated genes, but these
findings have not translated into progress in clinical
trials (1). This likely reflects the limitations of
GWAS in only identifying single variants, while the
key to understanding complex diseases that are
influenced by multiple genetic loci is to find
combinations of variants that distinguish one
patient subgroup from another.

Further, identifying targets underlaying multiple
indications would allow us to effectively target
patient subgroups across CNS indications.

QUALITY CONTROL
After defining the criteria for cases and controls for 
a given indication, each dataset used goes through 
and extensive and stringent quality control which 
involves filtering of SNPs based on various criteria 
(MAF, HWE etc.), generation of QQ plot and GWAS 
results.

COMBINATORIAL ANALYSIS
The datasets were analysed in the PrecisionLife 
platform to identify combinations of SNP 
genotypes that, when observed together in a 
patient, are strongly associated with specific CNS 
disorders. 

SNP combinations that have high odds ratios, low 
p-values and high prevalence in cases are 
prioritized. This process undergoes 1,000 cycles of 
fully randomized permutations and combinations 
must meet a specified FDR threshold. SNPs are 
scored using a Random Forest algorithm in a 5-fold 
cross-validation framework and prioritized based 
on their ability to differentiate cases and controls. 
The highest scoring SNPs are then mapped to 
genes and clustered by the patients they co-occur 
in to generate a disease architecture. 

Methods

Results
PATIENT STRATIFICATION 
Clustering SNP genotypes combinations, based
upon the patients in which they were found,
generates distinct disease subgroups that can be
defined by their genetic markers and specific
biological functions, e.g., neuroinflammation,
autophagy, serotonin receptor signaling, metal ion
homeostasis, and adipose tissue differentiation/
fatty acid synthesis.

CROSS-DISEASE ANALYSIS
Results of each of the analysis are combined with 
the Patient Stratification results, and the PL 
Knowledge Graph database, to identify overlap in 
genetic markers, affected pathways and tissues, as 
well as protein function and model organisms’ 
phenotypes. 

Conclusion

Utilising a variety of techniques, from enrichment 
analysis, through semantic clustering and data 
mining, allows PL to identify genetic targets that 
can contribute to the underlying cause of multiple 
CNS indications or can be relevant for multiple 
patient subgroups across diseases. Further 
exploration of pathways of interest can be 
advantageous when investigating a specific MoA.

Figure 1. Combinatorial analysis enables PL to detect additional 
signal in datasets that yield limited results using GWAS

Figure 2. Combining results from multiple analyses can 
uncover underlying patterns across CNS indications

Figure 2. Following the combinatorial analysis, PL creates patient stratification analysis and a gene overlap map. These approaches 
allow us to identify patient subpopulations that are connected to the genes or pathways overlapping across different indications. 

Figure 4. High level Reactome pathways 
connected to immune and stress functions

Figure 4. Sankey plot of the Reactome (6) level 2 ancestor pathways connected to neuronal,  
immune-response or stress-response pathways. Width of the Sankey ribbon is proportional to the 
number of connections between the high level Reactome pathway, and the genes connected to 
each indication in the PL knowledge graph. 

Figure 3. Cross-CNS similarities based on Gene Ontology: Biological Process 
enrichment and semantic similarity score

Figure 3 (a). Gene Ontology enrichment analysis of gene list from each indication was performed using g:Profiler (2). Clustering using scipy (Jaccard metric) is based on presence 
or absence of GO term in the list of enriched terms for a given indication (b) GOGO semantic similarity score (3) was calculated between the list of enriched GO terms for each 
indication The compound score across the lists of GO terms was calculated using Average Best-Matches (ABM) approach (4) (c) Heatmap of GO:Biological Process enriched 
terms in each of the indications (p<0.05, p-value correction for multiple testing using ‘Benjamini-Hochberg’, heatmap values correspond to - log10(p value)). GO terms were 
grouped using CateGOrizer (5) to visualise the main biological processes. 
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PL can use these insights to identify more effective
therapeutic strategies and accompanying
biomarker sets which match them to patient
subgroups across multiple CNS indications and can
highlight opportunities for drug repurposing.

GWAS Combinatorial Analysis

Single SNP associations must be significant across large groups of 
patients

Specific combinations of variants associated with each patient 
subgroup serve as a genetic stratification biomarker

Limited insights unless disease is likely to be caused by a small 
number of rare variants with large effect sizes (often in gene coding 
regions affecting protein 3D structure)

Patient subgroups with different causes of disease or even incorrect 
diagnoses can be distinguished (stratified) by different mechanistic 
etiology

Does not account for the effects of interactions between SNPs, 
genes and metabolic networks

Captures epistatic and non-linear additive effects of all interactions 
between SNPs, genes, environmental factors and metabolic 
networks
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Figure 1. (a) Conceptual representation of features, combinations, disease signatures and communities used to build up the disease
architecture in the PrecisionLife combinatorial methodology. (b) Manhattan plot of genome-wide p-values of association for the AD UK
Biobank cohort. The dashed line represents the genome-wide significance threshold at p<5e-08.
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Figure 5. Cross-indication look at gene 
expression in neuronal cell types

Figure 5. The composition bar plot showing the percentage of genes found in each 
indication that are expressed (and enriched) in a given neuronal cell type in Human 
Protein Atlas (7). For each of the indications, between 45-65% of the genes could be 
connected to single cell expression profile. 

Figure 6 (a). Chord plot showing the behavioural mouse phenotypes shared between the 
CNS indications (from Mouse Phenotype Ontology (8)), the thickness of the ribbon is 
proportional to the number of phenotypes shared between the diseases. (b) Sankey plot
showing a subset of behavioral phenotypes of interest and CNS diseases.

Figure 6. Overlap in behavioural mouse 
phenotypes across CNS indications

Table 1. Datasets used for the PL 
combinatorial analysis in CNS indications

Table 1. Variety of data sources were used for PL combinatorial analysis. Because of the inherent 
differences in chip design, we expected to see less overlap between PKD and other CNS diseases. 
All datasets were processed according to PL standard prior to the analysis.
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